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Safety Verification Methods for Human-Driven
Vehicles at Traffic Intersections: Optimal

Driver-Adaptive Supervisory Control
Gabriel Rodrigues de Campos, Fabio Della Rossa, and Alessandro Colombo

Abstract—We design an optimal, driver-adaptive supervisor for
collision avoidance at an intersection. The algorithm is able to
identify optimal corrections to the human-decided inputs and to
keep the system collision free. To determine the set of safe control
actions, we exploit the notion of maximal controlled invariant set.
We leverage results from scheduling theory to verify the safety
of a given control input, and propose an efficient optimization
algorithm providing optimal solutions with respect to the drivers’
intent. We also present an approximate supervisor algorithm that
can be solved in polynomial time and has guaranteed error bounds.
Finally, we validate our approach with simulation results, as well
as on naturalistic data.

Index Terms—Collision avoidance, intersection, safety verifica-
tion algorithms, supervisory control, traffic coordination.

I. INTRODUCTION

MODERN transportation systems are increasingly rely-
ing on communication technologies and automatic con-

trol [1], [2], and a particular area of interest of recent research
on smart mobility is intersection management. Even if inter-
sections represent a small part of the entire road system, they
account for a significant part of traffic accidents. According to
recent reports, 20% and 21.5% of traffic fatalities during the
last decade are intersection related within the EU and the USA,
respectively, [3], [4]. Most important, close to 94% of accidents
are completely, or in part, due to human error as a result of
misinterpretation of a situation, inattention or the disregard of
traffic rules [3], [5]. Such alarming numbers justify the design
of increasingly sophisticated semiautonomous and autonomous
safety systems, aimed to provide more efficient, comfortable,
and almost accident-free road traffic.

In this paper, we focus our attention on collision avoidance
algorithms at traffic intersections. We assume that humans are
driving each car, and that a (centralized or decentralized) su-
pervisor is in charge of ensuring the vehicles’ safety (i.e., a
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Fig. 1. Supervisory control structure of human-driven vehicles.

human-in-the-loop system, see Fig. 1). We consider that the in-
formation on the environment and surrounding vehicles and an
estimation on the drivers’ intent are available and exchanged via
a wireless network between the vehicles. We abstract from the
perception and drivers’ intent estimation problems, proposing
a generic algorithm that can cope with any intent estimation
algorithm, e.g., [6]–[8]. We aim at designing a driver-adaptive
supervisor (blue element of Fig. 1). In practice, such a supervisor
can be implemented in two fundamentally different frameworks.
In a centralized framework, a single supervisor functions as the
process manager, and the control inputs are communicated over
wireless links. This setup requires two communication hops: one
for exchanging the state information and a second for the control
policy. In a decentralized framework instead, we consider that
computation is performed by supervisor units installed in each
vehicle, where each supervisor has access to global vehicles’
information transmitted over omnidirectional communication
links. The reader can refer to [9] for a detailed discussion on
decentralized and distributed sensing and control.

The problem of supervision for collision avoidance is dis-
cussed, among others, in [10]–[18], and is typically set in
a framework of verification for safety specifications. Though
standard general purpose algorithms exist, they are limited by
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numerical complexity to handle problems involving just a few
agents (typically two). A set of efficient solutions for the inter-
section collision avoidance problem was proposed in [13] using
the scheduling theory, and extended to more complex scenar-
ios in [15]–[18]. Note that all the aforementioned papers focus
solely on the safety aspects, and ignore in their design optimal-
ity arguments: no attempt is done to approximate the drivers’
intent when the drivers’ input is overridden. Hence, there may
be a mismatch between the input returned by the supervisor
and the drivers’ desired input. To cope with this problem, we
propose an optimal, driver-adaptive solution. Our approach is
based on the solution of two separate problems: 1) The verifi-
cation problem (VP), determining if there exists an input signal
that leads all agents safely through the intersection, and 2) the
supervisor problem, returning a safe and optimal approximation
of the drivers’ intent if the desired input violates safety condi-
tions. To determine the set of safe control actions, we exploit the
notion of maximal controlled invariant set (MCIS). Even if our
approach is aimed at human-driven vehicles, it can be coupled
with existing algorithms for autonomous vehicles [19]–[24], in
a multilayer control structure. In this case, our algorithm would
ensure the safety of the trajectories generated by a higher level
decision system.

The contributions of this paper are the following. First, we
elaborate on a novel optimal conflict resolution technique first
presented in [25] that is optimal with respect to the human’s
desired actions. Second, we propose an optimal supervisor cou-
pled with a state predictor robust to input uncertainties, easily
extendable to also handle modeling and measurement uncer-
tainties. Third, we discuss here approximate solutions that guar-
antee real-time implementation of the proposed solution for set
of more than eight vehicles. Finally, we validate our theoretical
framework not only on simulated but also on real data. Note that,
though building on our previous work [25], all the theoretical
machinery (definitions, lemmas, theorems, ...) is novel due to
the robust state prediction and the definition of the MCIS given
later. This paper is organized as follows. Section II describes
the dynamic model, and Section III the problem formula-
tion. The different steps of our approach are presented subse-
quently: the state prediction in Section IV; safety verification in
Section V; and control synthesis in Section VI. The properties
of our supervisor algorithm are discussed in Section VII, simu-
lations and experimental results given in Section VIII, and our
conclusions provided in Section IX.

II. SYSTEM DEFINITION

Consider the system

ẋ = f(x,u), y = h(x) (1)

where x ∈ X ⊆ Rrn is the state of n vehicles moving on n
different paths with r-order dynamics, y ∈ Rn is the vector of
the positions of the vehicles along their paths, and u is a vector of
control inputs. The system is given by the parallel composition
of n different systems

ẋi = fi(xi, ui), yi = hi(xi) (2)

Fig. 2. Illustration of the considered scenario. Several human-driven vehicles
approach an intersection following predefined paths.

describing the longitudinal dynamics of each vehicle. We as-
sume that system (1) has unique solutions and that the individual
systems (2) are monotone [26], with R+ (the nonnegative real
line) as the positivity cone of yi . This yields

(xi(0), ẋi(0)) � (x′i(0), ẋ′i(0)), ui � u′i
⇓

(xi, ẋi) � (x′i , ẋ
′
i).

(3)

In words, this means that the more a vehicle accelerates, the
faster it will move. Throughout this paper, xi, yi , and ui will
be used indifferently to denote vectors (as above) and signals,
the correct interpretation will be clear from the context. The
values of x and y at time t, starting from x0 and with input sig-
nals u, are denoted x(t,u,x0) and y(t,u,x0). The functional
spaces of the input signals ui(t) and u are Ui and U ⊂ Rn ,
respectively, and the set Ui is compact, with a unique maxi-
mum ui,max and minimum ui,min . We also assume that ẏi is
bounded to the nonnegative interval [0, ẏi,max] for all i and that
limt→∞ ẏi(t, ui,max) = ẏi,max . Without loss of generality, and
for simplifying the notation, we assume that vehicles have ho-
mogeneous input sets Ui , such that ui,min = uj,min = umin and
ui,max = uj,max = umax ,∀i, j.

In this paper, we assume that the path of each vehicle i is
known, and that vehicles do not change paths/lanes when they
engage in the intersection. The intersection can be modeled
as an interval (ai, bi) along each path, see Fig. 2. Note that
the interval (ai, bi) should be defined in such a way that the
size of vehicles and the intersection itself are accounted for.
Let B ⊂ Rn denote the (time invariant) bad set, including all
configurations corresponding to a side collision, i.e., all yi and
yj such that yi(t) ∈ (ai, bi) and yj (t) ∈ (aj , bj ) at the same
instant t

B :=
{
y ∈ Rn : yi ∈ (ai, bi) ∧ yj ∈ (aj , bj ), for some i �= j

}
.

The supervisor that we present later on is implemented as a
discrete-time algorithm. To keep notation simple, we consider in
the rest of this paper that 0 is the current time when a step of the
supervisor is executed. Finally, we also introduce the following
definition.

Definition 1 (Notation convention): We denote the follow-
ing:

1) um the measurement of brake and acceleration input for
all drivers, taken at time zero and from time zero onwards;
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2) udes(t) the unknown, future desired control signal for all
drivers;

3) uhyp(t) a hypothesis on the future behavior of the drivers,
i.e., a hypothesis on udes(t);

4) umeas(t) a constant input signal, equal to um .

III. PROBLEM STATEMENT

We assume that humans are driving each car, and that a su-
pervisor is in charge of verifying the safety of human-decided
control inputs [18], [27]. In the literature, the subset of X of all
initial conditions admitting a safe input is known as the MCIS,
see [28]. Define [xl ,xh ] := {x : xl ≤ x ≤ xh}, where xl and
xh represent a lower and upper bound on the state vector, re-
spectively. Formally, the MCIS is given as follows.

Definition 2: The set [xl ,xh ] ⊆ X belongs to the MCIS if
and only if there exists u ∈ U such that y(t,u,x0) /∈ B for all
t ≥ 0 and for all x0 ∈ [xl ,xh ].

Note that the definition above still holds when the set of states
is a singleton. As long as the system’s state remains within the
MCIS, there exists an input that avoids collisions. Therefore,
the role of the supervisor is to ensure that the state never leaves
the MCIS, while modifying the input selected by the drivers as
little as possible.

Let u : R+ → Rn be the input returned by the supervisor.
The supervisor problem can be posed as the following.

Problem 1 (Supervisor Problem): Given the current state
x0 , the input signal umeas and a cost function J(umeas ,u),
return u such that the future state will not enter the bad set B,
and so as to minimize J(umeas ,u).

Here, asking for the future state not to enter the bad set B,
reads f(x0 ,u) ∈ Tx MCIS ∀t, where Tx MCIS denotes the
tangent cone at x to the MCIS and corresponds to the set of all
vectors v such that

lim
xk→x,xk ,x∈MCIS

xk − x
‖xk − x‖ =

v
‖v‖ .

The above limit corresponds to the set of infinitesimal perturba-
tions (xk − x) such that xk ∈MCIS. The supervisor routine is
then composed of the following sequential steps.

1) State prediction over a horizon θ given uhyp.
2) Safety verification, ensuring that the set of predicted states

can be reached without collisions using uhyp , and that
there exists an input that avoids collisions for all t > θ,
for all states in the set.

3) Control synthesis, when the safety verification fails.
The above supervisor is implemented as a discrete-time algo-

rithm, with a fixed time stepping τ (larger than the worst case
computational time). An illustration of this principle is given in
Fig. 3. We will now analyze the three steps separately.

IV. STATE PREDICTION

Even if the driver’s high-level objectives ( e.g., go straight
or turn at the intersection) are assumed to be known a priori
inferred by a high-level intent identification algorithm [6], [29],
the supervisor can only measure the current brake and accelera-
tion input, um (see Definition 1). In the impossibility of exactly
knowing the drivers’ future desired control signal udes , safety

Fig. 3. Illustration of the working principle of the proposed supervisory con-
trol. Given the estimated driver intent and the current measurement of the
system’s state, a state prediction over a predefined horizon is performed. For
the resulting state predictions, the verification problem (VP) is solved: if the
verification succeeds, the driver’s input is returned; otherwise, a safe control
input needs to be computed.

Fig. 4. Notation convention: illustration according to Definition 1.

systems aiming to optimize a car’s response around udes should
therefore incorporate a suitable inference algorithm for the sig-
nal udes . In this paper, we do not focus on the way to infer a
hypothesis uhyp , but we define our state predictor so that the
resulting architecture correctly works for any possible hypoth-
esis.

Let θ be the prediction horizon and uhyp(t) ∈ [umin ,umax]
represent any hypothesis on the driver’s behavior. Recall that
0 is considered to be the current time at which the supervisor
problem is solved. The lower- and upper-bounds of the estimated
trajectory are defined as follows:

xl(t,uhyp) := x(t,u,x0) s.t.

{
u = umin , for t ∈ [0, τ ]

u = uhyp(t), for t ∈ (τ, θ]
(4)

xh(t,uhyp) := x(t,u,x0) s.t.

{
u = umax , for t ∈ [0, τ ]

u = uhyp(t), for t ∈ (τ, θ]
(5)

See Fig. 4 for an illustration. The following lemma holds as a
consequence of monotonicity.

Lemma 1: Given the current state measurement x0 ,
xl(t,uhyp) ≤ x(t,u,x0) ≤ xh(t,uhyp) for all 0 ≤ t ≤ τ and
for all u(t) ∈ [umin ,umax].

Here, we relax the assumptions on the driver’s behavior of
[25], where the driver’s input was considered to be a fixed,
constant signal: (4) and (5) consider a control input equal to umin
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and umax for t ∈ [0, τ ], respectively, and uhyp ∈ [umin ,umax]
for t ∈ (τ, θ]. This is important to guarantee that the supervisor
proposed later is nonblocking, a property that would not be
satisfied if the state predictions were solely based on uhyp(t).

V. SAFETY VERIFICATION

In order to guarantee safety, collisions should be avoided for
all future times. Hence, guaranteeing safety comes to ensuring
that the set of (infinite horizon) control actions avoiding all
conflicts is nonempty. Consider a prediction horizon θ and an
expected control signal uhyp(t). We formally define the VP as
follows.

Problem 2 (VP): Given the set of state estimations
[xl(θ,uhyp),xh(θ,uhyp)], determine if there exists an input
signal u which guarantees that y(t,u,x0) /∈ B for all t ≥ 0
and for all x0 ∈ [xl(θ,uhyp),xh(θ,uhyp)].

In other words, we need to verify that

[xl(θ,uhyp),xh(θ,uhyp)] ∈ MCIS. (6)

To verify the above condition, we exploit the representation of
the constraint (6) in terms of a scheduling problem, following
the idea introduced in [13]. We briefly introduce this equivalence
in the following section.

A. Equivalence Between Verification Problem and
Scheduling Problem

Let yl(t,u) = h(xl(t,u)) and yh(t,u) = h(xh(t,u)).
Define for each agent i with yi(0) ≤ ai the quanti-
ties Ri := min{t ≥ 0 : yh

i (t, umax) ≥ ai}, Di := min{t ≥ 0 :
yh

i (t, umin) ≥ ai}. These two quantities are, respectively, the
minimum and maximum time at which yh

i (t, ui) reaches the in-
tersection (and 0 if yh

i (t, ui) > ai). Notice that Ri is always fi-
nite, since by assumption limt→∞ yi(t, ui,max) = ẏi,max , while
Di can in general be infinite if ui,min can bring agent i to a
stop before ai . For each agent i with yh

i (0) ≤ ai , given a
real number Ti , define Pi(Ti) := minui ∈Ui

{t : yl
i(t, ui) = bi},

with constraint yh
i (t, ui) ≤ ai ∀ t < Ti . If the constraint cannot

be satisfied, set Pi(Ti) :=∞. If [yl
i(0), yh

i (0)] ∩ (ai, bi) �= ∅
define Pi(Ti) := min{t : yl

i(t, ui,max) = bi}, and if yl
i(0) ≥ bi

define Pi(Ti) := 0. Pi(Ti) is the earliest time that yl
i can reach

bi , if yh
i does not pass ai before Ti .

A scheduling problem consists in assigning jobs to a resource
satisfying given requirements [30]. Using the above quantities,
we can write the VP as a scheduling problem where the inter-
section represents the resource, the agents represent the job to
be assigned to the resource, and the time spent by each agent
in the intersection is the length of the job to be executed. The
following result holds.

Theorem 1: The interval [xl(θ,uhyp),xh(θ,uhyp)] ∈MCIS
if and only if there exists a schedule T = (T1 , . . . , Tn ) ∈

Rn
+ such that for all i

Ri ≤ Ti ≤ Di (7)

Ti ≥ Tj ⇒ Ti ≥ Pj (Tj ). (8)

The proof follows directly from [15], and will be omitted
here. In accordance with the results of Theorem 1, the solu-

Algorithm 1: [T, answer] = ExactVP (x,um ).
x0 ← x
uhyp(t) ← f(um ) ∀t ≥ 0
for all i ∈ {1, . . . , n} do

given [xl(θ,uhyp),xh(θ,uhyp)] calculate Ri and Di

end for
for all permutations of {1, . . . , n} do

T1 ← R1
for i ∈ {2, . . . , n} do

Ti ← max(Pi−1(Ti−1), Ri
)

end for
if Ti ≤ Di for all i ∈ {1, . . . , n} then

return {T, yes}
end if

end for
return {∅, no}

tion to (6) can be found using Algorithm 1. Given the set of
initial conditions [xl(θ,uhyp),xh(θ,uhyp)], Algorithm 1 cal-
culates R = [R1 , . . . , Rn ] and D = [D1 , . . . , Dn ] and retrieves
a schedule (if one exists) by testing all the possible ordering
permutations of n agents.

There is also an extension of the scheduling problem ,
defined by (7) and (8), where jobs cannot be executed during
specified time intervals. These are known as inserted idle
times (iit), see [16]. This particular type of scheduling problem
will be necessary later for the derivation of a multiobjective
optimization algorithm.

VI. CONTROL SYNTHESIS

When safety verification fails [according to (6)], the last stage
of the supervisor routine requires the synthesis of a safe control
signal minimizing a given performance metric. Before intro-
ducing the proposed optimization algorithm, let us discuss the
optimization objectives and the implementation aspects of the
supervisor algorithm. The supervisor routine is implemented
with a time stepping τ , meaning that the generated output is the
optimal input signal u for the interval [0, τ ], i.e., until the next
instant when the supervisor routine is performed. Since the only
information available from the drivers is the current input um ,
a sensible objective is to minimize the difference between the
supervisor correction and the constant signal umeas(t), equal
to um for all t ≥ 0. This choice is suitable for the chosen nu-
merical method given in the sequel, which requests a constant
signal, and approximates well the drivers’ intent as long as τ
is small with respect to the drivers’ input rate of change. We
will therefore define the cost function as the infinity norm of the
difference between the supervisor output and umeas

J(umeas ,u) := ‖u− umeas‖∞. (9)

By using the infinity norm, we minimize the worst case dif-
ference between ui and umeas,i for all vehicles. We can then
formalize the following optimization problem:

min
u∈U

J(umeas ,u)

subject to x(θ,u,x0) ∈ MCIS
(10)
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where the optimization constraint is expressed as the solution
of the VP, and can be addressed using the techniques discussed
in [13] and [18], which exploit a similar equivalence to the one
presented in Section V-A. In the sequel, we provide a numerical
strategy to solve problem (10).

Remark 1: Note that this approach differs from previous
works in the domain, which ignore in their design any opti-
mality arguments. In the nonoptimized implementation of the
supervisor problem presented in [13] and [15]–[18], no attempt
is done to approximate the drivers’ intent when the drivers’ in-
put is overridden. Hence, this is equivalent to solving (10) with
the cost function

J(udes ,u) :=

{
0, if umeas = u

1, if umeas �= u.
(11)

This corresponds to returning umeas whenever this maintains
the state within the MCIS, and to returning an arbitrary input
u such that x(θ,u,x0) ∈ MCIS otherwise. Though effective,
this can lead to unwanted or unnecessarily aggressive decelera-
tions/accelerations.

A. Single Objective Control Design

Let ubound be an upper bound to (9). Problem (10) can then
be reformulated as

min
u∈U

ubound

subject to ‖u− umeas‖∞ ≤ ubound

x(θ,u,x0) ∈ MCIS.

(12)

Clearly, problems (10) and (12) are equivalent: the solution of
(12) minimizing ubound corresponds to the optimal solution of
(10). However, the search space of (12) is a functional space. To
simplify the optimization problem, define MCIS(ubound) as the
set of all states x ∈ X satisfying the VP under the constraint

‖u(t)− umeas(t)‖∞ ≤ ubound , for t ∈ [0, θ]. (13)

Then, we can write

min
ub o u n d ∈R+

ubound

subject to x0 ∈ MCIS(ubound)
(14)

where the search space is now the nonnegative real line. The
following result holds.

Lemma 2: The optimal cost of (12) is equal to the optimal
cost of (14).

Proof: Let u
′∗
bound and u∗bound represent the optimal costs of

(12) and (14), respectively. The following two arguments hold.
1) u∗bound ≥ u

′∗
bound : If x0 ∈ MCIS(u∗bound), then there ex-

ists ū such that ‖ū− udes‖∞ ≤ u∗bound for all t ∈ [0, θ]
and x(θ, ū,x0) ∈ MCIS. Take now u = ū for t ∈ [0, θ]
and u = udes for t > θ. This gives ‖u− udes‖∞ ≤
u∗bound and x(θ,u,x0) ∈ MCIS. Thus, (ū, u∗bound) is a
feasible solution for (12).

2) u
′∗
bound ≥ u∗bound : If x(θ,u,x0) ∈ MCIS and ‖u−

udes‖∞ ≤ u
′∗
bound , then x0 ∈ MCIS(u

′∗
bound). Therefore,

u
′∗
bound is a feasible solution for (14).

Because of the previous two statements, u∗bound = u
′∗
bound . �

Algorithm 2: Numerical solution of (14).

1: Initialise U = maxi(ui,max − ui,min), L = 0
2: while U − L > threshold do
3: ubound = (U + L)/2
4: if x0 ∈ MCIS(ubound) then
5: U = ubound
6: else
7: L = ubound
8: end if
9: end while

The optimal cost u∗bound of (12) is the smallest value of the
cost function (9) for which all agents can avoid collisions. The
optimal solution u∗bound to (14) can be numerically computed
using the bisection method (see Algorithm 2), and an optimal
solution of (12) retrieved by selecting an input u satisfying the
constraints of (12) for ubound = u∗bound . Ways to construct such
an input are explained in [13], for example.

Note that there can be multiple optimal solutions u with
the same cost u∗bound : an emergency manoeuvre necessary to
avoid a collision between two vehicles may set a large u∗bound ,
hindering the optimization of the supervisor correction for a
third vehicle unaffected by the collision. This is particularly
clear in the results presented in Section VIII-A. In other words,
there is a set of optimal solutions to problem (10), and the
single-agent cost functions Ji(umeas,i , ui) induce a preorder on
this set. In the next section, we explore the solution structure of
(12) in terms of Pareto optimality. We formulate the supervisor
problem as a multiobjective optimization problem and show
how to retrieve an optimal solution.

Remark 2: Algorithm 2 inherits the complexity of the ver-
ification step x0 ∈ MCIS(ubound), since the bisection loop is
O(1). Therefore, the complexity of optimally solving (10) is
comparable to that of solving the VP.

Remark 3: The optimality of problem (12) is not dependent
on uhyp . A less accurate hypothesis uhyp will only increase
the number of interventions (i.e., the total time the supervisor
overrides the driver’s input). Once overriding, the optimization
procedure is independent of uhyp and it is shown here to be
Pareto optimal. Recall that safety is always guaranteed due to
the robust state prediction for t ∈ [0, τ ].

B. Multiobjective Control Design

Rewrite problem (10) as the following multiobjective opti-
mization problem:

min
u1 ∈U1

J1(umeas,1 , u1)

min
u2 ∈U2

J2(umeas,2 , u2)

...

min
un ∈Un

Jn (umeas,n , un )

subject to x(θ,u,x0) ∈ MCIS.

(15)

We introduce the following definition.
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Fig. 5. Illustration of Pareto and weak-Pareto solutions, according to
Definition 3.

Definition 3: An admissible solution u of (15) is called weak
Pareto optimal if there exists no admissible solution u′ such
that Ji(umeas,i , u

′
i) < Ji(umeas,i , ui) for all i; among the weak

Pareto optimal solutions,u is called Pareto optimal if there exists
no admissible solution u′ �= u such that: 1) Ji(umeas,i , u

′
i) ≤

Ji(umeas,i , ui) for all i, and 2) Ji(umeas,i , u
′
i) < Ji(umeas,i , ui)

for at least one i. An illustration is presented in Fig. 5.
It follows from Definition 3 that Pareto optimal solutions are

not comparable in the preorder induced by (15), i.e., all Pareto
optimal solutions are equally good. Considering Definition 3,
we introduce our next result.

Lemma 3: All optimal solutions of (10) are weak Pareto Op-
timal for (15).

Proof: We prove this result by contradiction. Assume that
there is an optimal solution u of (10) that is not Pareto op-
timal for (15). This means that there exists a solution u′ of
(15) such that Ji(umeas,i , u

′
i) < Ji(umeas,i , ui) for all i. Then,

J(umeas ,u′) < J(umeas ,u) in (10), which contradicts the op-
timality of u. �

By the above lemma, any optimal solution of (10) is at least
weak Pareto optimal. Nevertheless, our ultimate goal is to select,
among all optimal solutions, one that is Pareto optimal.

To find the optimal solution to (15), we will exploit in the se-
quel the equivalence described in Section V-A. Recall now the
definitions of the quantities Ri,Di , and Pi and note that they are
all dependent on the set Ui . In the presence of constraint (13),
such quantities become a function of the constraining quan-
tity ubound . Hence, we define Ri(ubound),Di(ubound), and
Pi(Ti, ubound) as in Theorem 1, with the additional constraint
‖u(t)− umeas(t)‖∞ ≤ ubound for t ∈ [0, θ]. We introduce the
following definition.

Definition 4 (Scheduling Problems): Letting SP denote a
scheduling problem defined by (7) and (8), we write the fol-
lowing.

1) SP(ubound) when the scheduling quantities are computed
under the constraint (13).

2) SP(u1,bound , . . . , un,bound) when the constraint (13) is
different for different agents.

3) T ∈ SP(ubound) if T is a feasible schedule of
SP(ubound).

4) SP(L, ubound) when a restriction of SP(ubound) to a sub-
set L of the agents {1, . . . , n} is considered.

5) SP(ubound , IIT ) when an additional constraint

(Ti, Pi(Ti)) ∩ (αj , βj ) = ∅ ∀ i, j �= i. (16)

is added to SP(ubound), given a set of inserted idle times
IIT:= {[α1 , β1 ], [α2 , β2 ], . . .}.

6) SP(L, ubound , IIT) when constraint (16) is added to
SP(L, ubound), given a set of inserted idle times IIT:=
{[α1 , β1 ], [α2 , β2 ], . . .}.

Using this new notation and Theorem 1, problem (14) can be
rewritten as

min
ub o u n d ∈R+

ubound

subject to ∃T : T ∈ SP(ubound).
(17)

The following holds.
Lemma 4: Consider the quantities Ri , Di , and Pi(Ti) of

SP(ubound), and R′i , D′i , and P ′i (Ti) of SP(u′bound) with
u′bound < ubound . We have that Ri ≤ R′i , Pi(Ti) ≤ P ′i (Ti),
Di ≥ D′i .

Proof: The property follows from the fact that SP(ubound)
is a relaxation of SP(u′bound). Note that changing the value
of ubound is equivalent to changing the bounds of the feasi-
ble set of inputs Ui . Hence, Ui(u′bound) ⊆ Ui(ubound) when-
ever u′bound < ubound , and since R′i , D′i , and P ′i (Ti) are de-
fined for the extremal points of Ui(u′bound), the previous result
holds. �

It follows from the previous result that by decreasing the
value of ubound one tightens the constraints of SP(ubound). As
a consequence, we can interpret the optimal cost of (12) as the
value u∗bound for which a subset of jobs verifies the constraints
exactly, i.e., would not be schedulable for a smaller value of
ubound . Based on this interpretation, we introduce the following
definition.

Definition 5 (Tight set): Consider a schedule T ∈ SP
(ubound , IIT). We say that an ordered set of jobs and inserted
idle times i ∈ {1, . . . , m} is tight if the following conditions are
satisfied.

1) All jobs and iit’s except the first start exactly after the
previous job or iit is done, i.e., Ti = Pi−1(Ti−1), or Ti =
βi−1 , or αi = Pi−1(Ti−1), or αi = βi−1 .

2) If the first element is a job it starts exactly at its release
time, i.e., at R1 .

3) If the last element is a job, it starts exactly at its deadline
Dm .

In words, a tight set is a set of jobs and iit’s whose scheduled
starting time cannot be changed without changing the order in
which they are executed. Note that a single job with equal release
time and deadline is a minimal example of a tight set, and that
an iit is by definition always a minimal tight set.

Given a tight set for a schedule T ∈ SP(ubound , IIT), let
constrained jobs denote the subset of jobs which do not sat-
isfy constraints (7), (8), or (16) if ubound is reduced, unless
we change the order with which they are scheduled in T. Let
Pi(ubound) and Di(ubound) denote the scheduling quantities of
problem SP(ubound) with dependence on ubound . The follow-
ing definition is introduced.
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Fig. 6. Illustration of two feasible schedules for SP(u∗bound , IIT). Jobs 1
and 2 are constrained in both schedules, whereas job 5 is constraining in T and
not tight in T ′. Schedule T ′ is then the constraint-minimal between the two.

Definition 6 (Constrained and constraining jobs): A tight
job i is constrained in a schedule T for a problem
SP(ubound , IIT ) if the following performances hold:

1) it is followed by another tight job j and Pi(Ti, u
′
bound) >

Tj for any u′bound < ubound ; or
2) it is followed by an IIT [α, β] and Pi(Ti, u

′
bound) > α for

any u′bound < ubound ; or
3) Ti > Di(u′bound) for any u′bound < ubound .
A tight job is constraining if it is not constrained and it is

preceded by a constrained job in the same set of tight jobs.
Hence, one can think of the constraining jobs for a schedule

T ∈ SP(ubound , IIT) as those jobs which limit the minimum
value ubound can take while allowing T to be adapted to be
feasible in SP(ubound , IIT), without changing the relative order
of jobs and iit’s. This leads us to the concept of a constraint-
minimal schedule, defined as follows.

Definition 7 (Constraint-minimal schedule): Consider a
schedule
T ∈ SP. The schedule is constraint-minimal if no other
schedule T′ �= T, T′ ∈ SP has a set of constrained jobs that is
a strict subset of that of T.

An illustrative example of constrained/constraining jobs and
constraint-minimal schedules is given in Fig. 6.

From Lemma 4, it follows that u∗bound defines the subset of
jobs that verify the scheduling constraints exactly, i.e., would
not be schedulable for a smaller ubound values. Hence, u∗bound
corresponds to the worst case scenario imposed by this set of
jobs, as the remaining jobs could still be schedulable for lower
values of u∗bound . The proposed solution to find an optimal value
of u∗bound,i is based in the following construction.

Procedure 1: (Reduction step)
1) Consider a schedule T ∈ SP(u∗bound , IIT), where u∗bound

is the optimal cost of (12) with constraint ∃ T :
T ∈ SP(ubound , IIT), and assume that T is constraint-
minimal.

2) Define a set C of constrained jobs and L of jobs that are
not constrained in T for SP(u∗bound , IIT), and define a
new set IIT′ := IIT ∪ {[Ti, Pi(Ti)]∀i ∈ C}.

3) Call u′∗bound the optimal cost of (14) with constraint ∃T′ :
T′ ∈ SP(L, ubound , IIT′).

4) Finally, consider the scheduling problem SP(u′′∗bound,1 ,
. . . , u′′∗bound,n , IIT), where u′′∗bound,i := u∗bound if i ∈ C,
and u′′∗bound,i := u′∗bound if i ∈ L.

In other words, we suggest to identify the subset of con-
strained jobs verifying the scheduling constraints exactly with
u∗bound , and remove them from the optimization problem (12) by
reserving their execution time as iit. This lead us to the following
result.

Lemma 5: The set of constrained jobs in T for SP(u∗bound ,
IIT) is a subset of the set of constrained jobs in any T′′ ∈ SP
(u′′∗bound,1 , . . . , u

′′∗
bound,n , IIT) for SP(u′′∗bound,1 , . . . , u

′′∗
bound,n ,

IIT).
Proof: This is a consequence of selecting a constraint-

minimal schedule T. First of all, notice that: 1) u′∗bound <
u∗bound , by Lemma 4 and since u′∗bound is computed by re-
moving from SP all constraining jobs, and 2) for any T′′ ∈
SP(u′′∗bound,1 , . . . , u

′′∗
bound,n , IIT), T′′ ∈ SP(u∗bound , IIT). The

only way that a job which is constrained in T for
SP(u∗bound , IIT) can be not constrained in T′′ for
SP(u′′∗bound,1 , . . . , u

′′∗
bound,n , IIT), is if its constraining job j is

scheduled at a different time in T′′ than in T. However, since T
is constraint-minimal, scheduling j at any different time would
generate a new constrained job k in T′′ for SP(u∗bound , IIT).
We have defined u′′∗bound,k = u′∗bound < u∗bound , therefore this
would imply T′′ /∈ SP(u′′∗bound,1 , . . . , u

′′∗
bound,n , IIT). �

By iterating the reasoning of Procedure 1, it is then possible
to retrieve a Pareto optimal solution to problem (15). The struc-
ture of the proposed multiobjective optimization procedure is
presented in Algorithm 3, and leads to the next result.

Theorem 2: Algorithm 3 provides a Pareto optimal solution
to (15).

Proof: The algorithm is implementing the process described
before Lemma 5, and returns a schedule T∗ and a solution to (15)
in terms of a set of optimal costs J∗1 , . . . , J∗n . From Lemma 5, we
can conclude that all jobs for the schedule T∗ ∈ SP(J∗1 , . . . , J∗n )
are constrained, or have J∗i = 0. In both cases, it is not possible
to find a feasible schedule for a problem SP(J ′∗1 , . . . , J ′∗n ) with
J ′∗i < J∗i for at least one i, therefore J∗1 , . . . , J∗n is a Pareto
optimal solution. �

Remark 4: The complexity of Algorithm 3 is defined by the
complexity of the optimization step, which in turn is determined
by the complexity of the test at line 4 in Algorithm 2.

The outcome of the multiobjective optimization algorithm
and the advantages with respect to the single-objective problem
are discussed later in Section VIII-A, where some simulation
examples are presented.

VII. SUPERVISORY CONTROL

In this section, we present a supervisor algorithm that solves
Problem 1, by sequentially performing the state prediction, the
safety verification, and the control synthesis stages. The super-
visor overrides the driver’s input signal if and only if the safety
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Algorithm 3: [u∗bound ,T∗] = MultiObjOpt(x,um ).

1: x0 ← x
2: umeas(t) ← um ∀t ≥ 0
3: Initialise L = {1, . . . , n}, IIT = ∅, U ∗ =∞
4: set k = 0
5: while L is nonempty or U ∗ > 0 do
6: k = k + 1
7: Optimization step: Solve problem(17): min ubound
8: subject to ∃T : T ∈ SP(L, ubound , IIT )
9: and call U ∗ its optimal cost

10: Selection step: Select a schedule
Tk ∈ SP(L,U ∗, IIT )

11: that is constraint-minimal
12: Reduction step:
13: for all jobs i ∈ L that are constrained for Tk do
14: remove i from L
15: add the interval [Ti, Pi(Ti)] to IIT
16: set u∗bound,i := U ∗, T ∗i := Tk

i

17: end for
18: end while
19: return (u∗bound,1 , . . . , u

∗
bound,n ), (T ∗1 , . . . , T ∗n )

verification stage fails, i.e., whenever

� u ∈ U s.t. y(t,u,x0) ∩B = ∅ ∀t ≥ 0

∀x0 ∈ [xl(θ,uhyp),xh(θ,uhyp)]

for all the agents i for which yi(0) ≤ bi . Recall that uhyp is
defined in Definition 1. In such cases, the overriding signal uopt

is given as

uopt,i := arg inf
ui ∈Ui

{
t ≥ 0 : yl

i(t, ui) ≥ bi

}

with constraints: ‖ui − umeas,i‖∞ ≤ u∗bound,i

yh
i (t, ui) ≤ ai for t < T ∗i

(18)
where (u∗bound,i , T

∗
i ) are given by Algorithm 3. In words, the

supervisor defines, when needed, an input uopt,i(t) allowing
agent i to exit the intersection no later than t = Pi(T ∗i ) or to
enter it before T ∗i , while satisfying input constraints u∗bound,i .
The structure of the proposed supervisor algorithm is given in
Algorithm 4. The following result holds.

Theorem 3: Assume that x0 ∈ MCIS. Then, Algorithm 4
1) solves the supervisor problem and 2) is nonblocking.

Proof:
1) To prove (i), consider that Algorithm 4 returns udes as long

as a schedule exists satisfying Theorem 1, i.e., as long
as [yl(t,uhyp),yh(t,uhyp)] ∩B = ∅, ∀t ≥ 0. If that is
not the case, condition (6) is not satisfied and an (over-
ride) input uopt is returned, which is defined according to
Algorithm 3. As such input is safe and has been derived
s.t. it minimizes J(umeas ,u), this concludes the proof.

2) Let u be the supervisor output at time t = 0. From
Lemma 1, it follows that x(τ,u,x0) ∈ [xl(τ,uhyp),xh

(τ,uhyp)], ∀ u. As shown before, the proposed
algorithm correctly solves the supervisor problem,

Algorithm 4: Supervisor(x,um ).

1: uhyp(t) ← f(um ) ∀t ≥ 0
2: umeas(t) ← um ∀t ≥ 0
3: {T, answer}← ExactVP(x0 ,uhyp )
4: if answer = yes then
5: leave the drivers do whatever they want. return
6: else
7: {u∗bound , T∗}←MultiObjOpt (x0 ,umeas)
8: override the driver input using uopt defined in

(18). return
9: end if

which means that [yl(t,uhyp),yh(t,uhyp)] ∩B =
∅, ∀t ≥ 0. Hence, this yields that ∀ x(τ) ∈ [xl

(τ,uhyp),xh(τ,uhyp)], there exists at least an ū s.t.
[yl(t, ū),yh(t, ū)] ∩B = ∅, ∀t ≥ τ , where ū is the su-
pervisor output at time t = τ . Therefore, the admissible
set of the supervisor at time τ is nonempty, i.e., the super-
visor is nonblocking. �

Remark 5: The previous results can be extended in order to
also cope with measurement noise. Using an approach similar
to [15], the proposed algorithm can be reformulated based on
the computation of the maximal robust controlled invariant set,
i.e., the largest set of states of inputs that avoids conflicts for all
positive times and for any admissible disturbance. By leveraging
the monotonicity properties and the uniform continuity of the
system’s flow, one can derive a robust supervisor algorithm.

A. Approximate Supervisor

In the previous section, we provided an algorithm that de-
termines exactly the membership in the MCIS according to (6).
But this verification is often a computationally difficult problem,
and has been proved to be NP-hard for some collision avoidance
problems of practical interest [13], [31]. A number of exact algo-
rithms have been proposed, whose application to systems with
more than a few agents is not practical [10]–[12], [14]. Some of
these results are applicable only to the two-agent conflict reso-
lution problem, and the others have exponential complexity in
the size of the state space.

Nevertheless, approximations exist with polynomially
bounded running time. An obvious way to reduce the computa-
tion time of Algorithm 3 to polynomial is to solve a scheduling
problem SPfixed-order with a predetermined job order instead of
SP at lines 3 and 3 of Algorithm 3. This, however, does not
guarantee in general an error bound. To choose a job order
with a guaranteed error bound, we can preprocess jobs using
the ideas presented in [13], [15], and [18]: we define a time
δmax(ubound), which is long enough so that any agent can cross
the interval (ai, bi) in at most δmax(ubound), and allocate this
fixed amount of time to each agent. Define SPfixed-length as the
scheduling problem with jobs of equal length δmax(ubound). By
substituting SP by SPfixed-length at lines 3 and 3 of Algorithm 3,
we can exploit the polynomial-time scheduling algorithm pro-
posed in [32] (and reported as algorithm POLYNOMIALTIME in
[13]) to compute an optimal schedule, i.e., an optimal job order.
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Fig. 7. Single-objective versus multiobjective optimization: (a) Single-
objective; (b) Multiobjective optimization with θ = 5 and uhyp = um eas =
0.5 (black dotted line).

Note that the solution found is a Pareto optimal solution among
all schedules with job lengths δmax(ubound). This optimal order
is then fixed and used in one more run of Algorithm 3 with
SPfixed-order.

In the next section, we will present simulation results high-
lighting the advantages of this approximate algorithm.

VIII. RESULTS

We consider in the sequel a multivehicle scenario as depicted
in Fig. 2. We assume that all agents are moving over different
paths and that their longitudinal dynamics are described by
double integrator dynamics given by

ẍi(t) = ui(t), yi(t) = xi(t) (19)

where ẋi ∈ [0 m/s, 17 m/s] and ui ∈ [−5 m/s2 , 3 m/s2 ], ∀i.
Note that a linear model has been chosen here for the sake of
simplicity. Nevertheless, the results of this paper also hold for
nonlinear dynamical models that satisfy the monotonicity prop-
erties mentioned in Section III. With the exception of Figs. 8 and
11, each subfigure is composed of two panels. In the top panel,
the intersection is represented by a grey box, and the position
trajectories of the different vehicles are in color. In the lower
panel, u and umeas are represented by solid and dotted lines,
respectively. The following results were obtained on a 2.8 GHz,
16 Gb RAM laptop with Windows 10, using MATLAB 2016b.

A. Single-Objective versus Multiobjective Optimization

We analyze in this section, the performances of the single-
and multiobjective algorithms. For this scenario, the initial con-
ditions of the system are x = [(0, 10), (24, 10), (32, 10)] and
the prediction horizon is θ = 5 s. To simplify the interpretation
of the results, we assume that the drivers of all vehicles always
request an input equal to uhyp = umeas = 0.5 (horizontal dot-
ted line in the bottom panels of Fig. 7), and that the intersection
corresponds to the interval [60, 75] m along all vehicles’ path.

Fig. 8. Experimental setup for data collection: (a) Illustration of the intersec-
tion scenario; (b) Naturalistic trajectories of the two vehicles; (c) Normalized
trajectories, where the intersection is set to be at the origin with a length equal
to twice the size of the vehicles. X and Y are local coordinates.

Fig. 7(a) shows the result of the single-objective optimization
problem (14), for which the optimal solution is u∗bound = 0.53.
One can see that, to avoid a collision between the blue (solid
line) and green (dashed line) vehicle, the optimal control pol-
icy forces all agents to deviate from their desired control input.
All vehicles apply a control signal where the maximum differ-
ence with respect to umeas corresponds to u∗bound , see the zoom
on the lower image of Fig. 7(a). Note, however, that the red
vehicle (dotted line) is not involved in an immediate collision
with the remaining vehicles and there is no reason to alter its
trajectory.

Fig. 7(b) shows the result of the multiobjective optimization
problem (15). As expected, the performance of the optimization
algorithm improves. More precisely, only the blue (solid line)
and green (dashed line) vehicles’ trajectories are corrected, al-
lowing the red vehicle (dotted line) to continue its desired trajec-
tory. Without needing to correct unnecessarily the red vehicle,
the multiobjective optimization algorithm is, as expected, less
restrictive.

B. Naturalistic Data Validation

We validate now the performances of our control algorithms
with naturalistic data, using two Volvo S60 T6 vehicles. We
considered an intersection scenario, as illustrated in Fig. 8(a),
and performed multiple tests in velocity ranges going from 20
to 40 km/h. For positioning, each vehicle was equipped with
inertial measurement and differential global positioning system
modules OXTS RT2002. Vehicles were used to generate realistic
trajectories at intersections, which were later fed as user-desired
inputs to our supervisor algorithm (i.e., there is no online su-
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Fig. 9. Supervisor Algorithm 4 applied to a real set of data with τ = 0.2 s
and θ = 1 s: (a) Collision-free case; (b) Collision case. In the bottom panels,
the dotted curves represent the measured input, while the continuous curves
correspond to the input given by the supervisor. The time axis is red if the
supervisor is overriding the desired input, black otherwise.

pervisor controlling the vehicles). The GPS-based trajectories
are presented in Fig. 8(b). We defined the intersection as an
interval centered around coordinate 0 on each path. The length
of the each car is 4.62 m and the intersection width is 10 m. The
distanced travelled by each vehicle along its own path is given
in Fig. 8(c).

In Fig. 9, we used the vehicle model (19) with the driver’s
input um being equal to the second derivative of the trajectories
of Fig. 8(c) and of an additional third trajectory. We assume
that uhyp is a constant signal equal to the last measurement um .
In other words, uhyp = umeas , see Definition 1. In the figure,
umeas is illustrated as a dotted curve of color corresponding to
the color of each vehicle. The dotted curve is only visible when
um is different than the input returned by the supervisor. The
supervisor runs with a time stepping of τ = 0.1 s and we define
θ = 1 s. The time interval where the supervisor is overriding the
drivers’ input is highlighted as the red portion of the time axis
in the bottom panel of Fig. 9(b).

In Fig. 9(a), where the vehicles perform a safe manoeuvre,
we can see that the supervisor never overrides the drivers: the
hypothesis on the driver’s behavior uhyp is always safe accord-
ing to (6). Such results show that, given the expected input
signal uhyp , the proposed supervisor does not unnecessarily
override the proposed control input and leaves the control of the
vehicle to the drivers whenever their behavior is considered safe.
Fig. 9(b) considers a different dataset of three vehicles. Here, the
vehicles’ inputs have been (artificially) shifted in time so that
it is coherent with a collision between the blue (solid line) and
red (dotted line) vehicles, while the green vehicle (dashed line)
performs a safe manoeuver: considering the collision threat, its
stops before reaching the intersection. As expected, the proposed
supervisor is able to identify vehicles that need to be overridden
from those that do not: the supervisor only overrides the blue
(solid line) and red (dotted line) vehicles from t = 9.4 s until
t = 12.5 s, see the red portion of the x-axis Fig. 9(b). During
this interval, the blue (solid line) vehicle is forced to accelerate

while the red (dotted line) decelerates, and this while minimiz-
ing the infinity norm error with respect to the input provided by
the drivers. However, the green (dashed line) vehicle is never
overridden (it is behaving safely), even though uhyp is different
from the driver’s desired input. For this scenario, the maximum
time to run the optimization algorithm was 0.03 s.

C. Simulation Results

In the following, we present simulation results for a three-
vehicle system. In all simulations, the initial conditions of the
system are x = [(0, 10), (8, 10), (16, 10)] and the supervisor
runs with a time stepping of τ = 0.1 s. For simplicity, we as-
sume that the drivers of all vehicles always request an input
equal to umeas = 1, and that the intersection corresponds to the
interval [60, 75] m along all vehicles’ path. Furthermore, in or-
der to discuss later the influence of the prediction horizon θ, we
consider four distinct values θ ∈ {0.1, 0.2, 1, 2} s. We consider
the nonoptimized approach given in [18] for all vehicle i in the
interval [ai − 30, bi ] m. Vehicles outside this interval never need
an override (they can stop before the intersection or they have
passed it), and can therefore be removed from the supervisor
problem.

The nonoptimized supervisor solution is presented in
Fig. 10(a), for θ = 0.1 s. We will use this case to highlight
the advantages of the proposed optimal design. One can see that
at t = 3.2 s into the simulation, the supervisor detects that ve-
hicles are about to leave the MCIS and intervenes by applying
bang–bang control inputs.

Fig. 10(b) shows the behavior of the proposed optimal
supervisor when θ = 0.1 s. See that the time instant when the
supervisor intervenes for the first time is identical to Fig. 10(a).
However, the control input profiles differ. While in Fig. 10(a),
the supervisor immediately proposes bang–bang inputs, in
Fig. 10(b) the control inputs are optimized, see the “stair-like”
profile of the green (dashed) and red (dotted) curves before
t = 4 s. Our solution is able to identify vehicles that need to
be overridden from those that do not, see the red (dotted line)
trajectory, which is overridden slightly later than in Fig. 10(a).
This effect in magnified in Fig. 7.

Fig. 10(c) considers the same scenario when θ = 0.2 s. By
optimizing over a longer prediction horizon, it provides a better
approximation of the drivers’ inputs while avoiding two consec-
utive collisions: a three-vehicle conflict from t = 3 s to t = 4.6 s
and a two vehicle’s conflict from t = 4.6 s to t = 6.3 s.

Finally, Fig. 10(d) and (e) consider the cases where θ = 1 s
and θ = 2 s, respectively. When compared to the previous cases,
we can see that this leads to more driver friendly, less aggres-
sive manoeuvres. Generally speaking, there is a tradeoff on the
restrictiveness of the supervisor: as the value of θ increases,
interventions will be triggered earlier than strictly necessary.
This is clear if one compares the red segment of the horizontal
axis (which represents the period during which the supervisor
intervenes) between Fig. 10(d) and (e).

We also perform randomized simulations for a set of
10 000 initial conditions. We consider a three vehicle setup re-
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Fig. 10. Simulated three-vehicle scenarios with τ = 0.1 s: (a) Non-optimized solution; the proposed optimal supervisor (Algorithm 4) with: (b) θ = 0.1 s; (c)
θ = 0.2 s; (d) θ = 1 s; (e) θ = 2 s. In the bottom panels, the dotted curves represent the measured input, while the continuous curves correspond to the input given
by the supervisor. The time axis is red if the supervisor is overriding the desired input, black otherwise.

Fig. 11. Probability of having (u(kτ ) − udes (kτ )): (a) less than; (b) equal
to or; (c) greater than the value displayed on the abscissa axis. The probabilities
are computed via a Monte Carlo simulation on a set of 10 000 randomized initial
conditions and for different values of θ.

questing a udes = uhyp = 1, with a randomly chosen initial
position xi(0) ∈ [0, 60] m and speed ẋi(0) ∈ [vmin , vmax],∀i.
The intersection corresponds to the interval [60, 75] m along the
vehicles’ paths, the simulation time is 8 s and τ = 0.1 s. This
means that there are (nr. of initial conditions× nr. of vehicles×
simulation time/τ ) samples. The results of randomized simula-
tions are presented in Fig. 11. We consider the multiobjective
optimization algorithm (15) for different values of θ, and we
compare our optimal approach with the nonoptimized one. In
panel (a), we show in the horizontal axis the input difference
ξ and in the vertical axis the percentage of samples for which
(ui(kτ)− ui,meas(kτ)) < ξ, i.e., the percentage of samples for
which the supervisor overrides the drivers’ request with an in-
put lower that (ui,meas(kτ) + ξ) with ξ < 0. Ideally, the curves
should be as low as possible on the left-hand side, i.e., the per-
centage of samples for which the input mismatch is large should
be as low as possible. One can see that having θ = 1 s and θ = 2 s
greatly reduces the number of large interventions when com-
pared to the nonoptimized solution (blue line).1 One can also
observe that the optimal solution with θ = 0.1 s and θ = 0.2 s

1The evolution of the system depends on the supervisor override as well as on
the future requested input. Hence, a control strategy which is suboptimal for a
given set of initial conditions may, in the long run, allow a more “gentle” override
signal. Had we just compared the maximum of the infinity norm difference

does not increase the optimality level. Nevertheless, as shown in
Fig. 7, the proposed solution is able to identify vehicles which
need to be overridden from those who do not. In Fig. 10(c), we
show the symmetric case, i.e., on the vertical axis is shown the
percentage of samples for which (ui(kτ)− ui,meas(kτ)) > ξ
with ξ > 0. As expected, increasing the value of θ reduces the
number of interventions with a large mismatch with respect
to the drivers’ intent. Finally, we can observe in Fig. 10(b)
the percentage of nonoverridden samples: increasing θ slightly
increases the percentage of overrides, from 11% for the nonop-
timized solution (i.e., 89% of nonoverrides) to 17% for our
optimal solution with θ = 1 s. However, as seen on the right-
and left-hand side of Fig. 10(a) and (c), respectively, the num-
ber of very small interventions is visibly higher for the optimal
solution with respect to the nonoptimized one. Increasing the
value of θ increases the number of total overrides but reduces the
difference (u− umeas). Hence, by tuning the value of θ, one
can better approximate the driver’s desired input and provide
a more user-friendly experience. The worst computation time
over the 2.430.000 samples is 0.087 s.

D. Approximate Algorithm

We present in this section simulation results for the approx-
imate supervisor discussed in Section VII-A. We consider an
eight-vehicle scenario, where initial conditions for each vehicle
i is given as xi = (i ∗ 8, 10),∀i = {0, . . . , 7}. The maximum
time to run the optimal algorithm for an eight-vehicle problem
being 0.15 s, we have therefore defined the time stepping as
τ = 0.2 s. As before, it is assumed that uhyp = 1 (horizontal
dotted line), and that the intersection corresponds to the interval
[60, 75]m along all vehicles’ path.

Fig. 12(a) and (b) consider θ = 0.4 s and θ = 2 s, respectively.
By optimizing the trajectories over a longer prediction horizon,
one can see that the supervisor approximates better the drivers’
desired inputs. Note that, as discussed before, interventions are
triggered earlier as the value of θ increases. Indeed, while in

between the desired and override input, all strategies would have looked the
same.
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Fig. 12. Approximate supervisor Algorithm 4 applied to a simulated eight-
vehicle scenario with τ = 0.2 s and : (a) θ = 0.4 s; (b) θ = 2 s. In the bottom
panels, the dotted curves represent the measured input, while the continuous
curves correspond to the input given by the supervisor. The time axis is red if
the supervisor is overriding the desired input, black otherwise.

Fig. 12(a) the first intervention happens at t = 1 s in the simu-
lation, in Fig. 12(b) interventions are triggered immediately at
the initial time. Moreover, while in Fig. 12(a) the red vehicle is
not able to cross the intersection within 20 s of simulation, in
Fig. 12(b) all vehicles clear the intersection.

Recall that the necessity of approximate solutions relies on
the fact that the exact supervisor algorithm may be untractable
for relatively small scale scenarios. However, by using the ap-
proximate algorithm proposed in [32], we are able to solve more
complex problems. Here, the maximum computational time is
only 2.5 times higher than the exact solution for a three-vehicle
case, but for an almost three times bigger system.

IX. DISCUSSION AND CONCLUSIONS

We presented an optimal supervisor for collision avoidance at
intersections leveraging results on scheduling theory. As in an
optimal constrained control framework [and model predictive
control (MPC) in particular], there are two main underlying
aspects: 1) input/state constrained predictions, 2) a receding
horizon implementation. A brief comparison is given in the
following.

1) Here, the variable θ in (12) and (14) can be seen as a
prediction horizon, defining how far ahead conflicts are
detected. Hence, by keeping τ unchanged, one can im-
prove its performance by increasing the value of θ. This
leads to more driver-friendly, less aggressive manoeuvres.
A great advantage with respect to MPC is that the com-
plexity of the verification problem remains unchanged,
independently of θ.

2) Normally, input, state, and safety constraints are formu-
lated in optimal control-based approaches as inequalities
or box conditions for all prediction instants. Hence, the
number of decisions variables drastically increases for
large prediction horizons and infinite horizon problems
cannot easily be treated in practice. In this paper, we use a
different approach and formalism: input, state, and safety

constraints are incorporated in all problems through the
condition x(τ,u,x0) ∈ MCIS. By leveraging this formu-
lation and the properties of the MCIS set, we are in fact
solving an infinite horizon optimization problem that guar-
antees perpetual safety.

3) The supervisor routine is implemented with a stepping
τ . Hence, the supervisor’s output control signal is only
applied for the interval [0, τ ], i.e., until the next supervisor
step. By regularly computing a new control policy, one
can more easily cope with limited sensing/communication
disturbances, as well as mitigate and compensate potential
estimation errors on uhyp .

Optimal conflict resolution approaches are still rare in lit-
erature. The major contribution of this paper is therefore the
inclusion of optimality arguments (with respect to the drivers’
desired input) into the design of our supervisor. This greatly
differs from previous works in this domain such as [15]–[18],
which ignore optimality and do not attempt to approximate the
drivers’ intent whenever the drivers’ input is overridden. We
also present a more generic, robust theoretical framework when
compared with our previous work [25]. More precisely, we pro-
pose a solution robust to input uncertainties, easily extendable
to also cope with modeling and measurement uncertainties by
exploring a solution identical to [15]. In [33], a two-step opti-
mization procedure was presented, but lacks a proof of optimal-
ity of the result of the two steps combined. Here, we prove the
optimality of our solution. Finally, we also adapted the approxi-
mation strategies proposed in [18] to work as part of the optimal
control design step. We are therefore able to cope with a set
of eight or more vehicles in real time. Future research should
approach scenarios with multiple vehicles per path and driver
intent estimation techniques.
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